刘龙教授团队在ACS Synthetic Biology发表了基于逻辑门的多层基因回路动态调控代谢途径的研究成果(2021级博士后崔世修为一作)-生物工程学院-江南大学生物工程学院
近期,我校生物工程学院刘龙教授团队综述了基于逻辑门的多层基因回路在动态调控代谢途径中的应用,研究成果“Multilayer genetic circuits for dynamic regulation of metabolic pathways”正式发表于ACS Synthetic Biology (IF=5.11) (https://pubs.acs.org/doi/10.1021/acssynbio.1c00073)。
代谢途径的动态调控可以精细地控制代谢流,使目标化合物的合成最大化,在合成生物学和代谢工程领域有着广泛的应用。然而,实现动态调控并非易事,因为代谢途径经常受到细胞内多个调控网络的影响,使用简单的单层控制策略很难获得理想的动态范围。因此,合成生物学家应用逻辑门的概念来构建更复杂的多层遗传回路,这些回路可以处理各种信号并将代谢通量最优地引导至目标分子的合成。
聚焦逻辑门在代谢网络动态调控中的新技术与新方法,该综述详细介绍了基于逻辑门构建多层基因回路的基本流程,包括非天然响应元器件的设计与构建、基因回路的构建、多层基因回路的重新设计与应用,基因回路的精细调控,整个流程遵循“设计-构建-测试-学习”的基本循环构建。首先,总结了动态调节系统的组成,并根据调控类型的不同,将动态调控分为三种类型:响应代谢物的启动子、基于转录因子的传感器和群体感应,明确动态调控的本质是实现细胞生长代谢与产物合成途径之间的最佳平衡;其次,介绍了基因回路在调控代谢途径中的应用,尤其是利用基因回路调控复杂的细胞调控网络,以实现在基因和蛋白质水平上动态控制生理过程;随后,论述了由逻辑门控制的多信号输入基因回路在调控代谢网络中的应用,并阐述了应用逻辑门调控代谢网络的关键问题,包括生物元器件的特异性、输入信号的响应强度、调控范围以及基因回路正交性等;最后,本文还以萜类物质为例展望了多层基因回路调控合成天然产物的未来发展方向,如使用人工智能通过蛋白设计开发基因回路中调控组件,建立标准化的基因回路促使其在不同物种中有效发挥功能等。
刘龙教授和吕雪芹副研究员为通讯作者,生物工程学院2021级博士后崔世修为论文第一作者。上述研究工作得到了国家重点研发计划(2020YFA0908300、2018YFA0900300)、国家自然科学基金(32070085、31871784、31870085、32021005)、中央高校基本科研专项资金(JUSRP52019A)和山东省重点研发计划(重大科技创新项目,2019JZZY011002)的资助。
图1不同类型的动态调控系统。
图2基于生物传感器的遗传逻辑门
-
碳氮比的概念和优化方法
碳氮比(C/ N) :严格意义上应是指在微生物培养基中所含的碳源中的碳原子摩尔数与氮源中的氮原子摩尔数之比。(周德庆微生物学教程),在这里,我认为对于既能做碳源又能做氮源的物质应该及计算碳源又计算氮源。很多情况我们简单用培养基的碳源和氮源的比值来替代,但这是不准确的。另外由于一些培养基成分中的碳源不易利用,碳氮比也有用还原性碳源和粗蛋白之间的比值来替代,比如下式碳氮比的计算,就是用葡萄糖中的碳元素的摩尔浓度比上总蛋白中氮元素的摩尔质量浓度。
넶3443 2021-09-09 -
【发酵基础】P1,P2,P3,千级、万级和十万级,关于微生物实验室的安全和洁净
넶2104 2020-05-08 -
-
【发酵基础】常用灭菌、消毒、除菌和防腐方法及其特征
染菌与控制是发酵圈永远绕不开的话题。降低染菌率是每一个发酵人应该认真学习和考虑的问题。而合理的应用灭菌、消毒和防腐方法是我们必备的技能。这也是我们在详细介绍发酵过程染菌防控之前需要介绍的内容之一。
넶744 2020-04-29 -
-